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Abstract— This paper seeks to determine which attack strategies
(hub, bridge, or fragmentation) are most effective at disrupting
two online child pornography networks in terms of outcome
measures that include density, clustering, compactness, and
average path length. For this purpose, two networks were
extracted using a web-crawler that recursively follows child
exploitation sites. It was found that different attack strategies
were warranted depending on the outcome measure and the
network structure. Overall, hub attacks were most effective at
reducing network density and clustering, whereas fragmentation
attacks were most effective at reducing the network’s distance-
based cohesion and average path length. In certain cases, bridge
attacks were almost as effective as some of these measures.
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I. INTRODUCTION

As early as the 18th century, academics have been
interested in networks as purely theoretical objects [1].
Networks have since emerged as a practical tool for
representing real world systems of interacting components,
ranging from the Internet to biological structures. This paper
examines the most effective measures of disrupting child
pornography networks situated on the World Wide Web. The
Web, as a network of sites connected by hyperlinks, has
transformed the manner in which people access and distribute
information. In doing so, it has attracted considerable
worldwide popularity; however, it has also produced certain
unintended consequences. This is particularly the case for child
pornography, where the Internet’s apparent anonymity, global
reach, and lack of regulation have rendered it a popular, easy,
and effective outlet for distributing and accessing such illegal
materials [2] [3]. The extent of this issue was recently
emphasized by the United Nations, which estimated that over
four million websites featured child pornography [4].

Current attempts to limit child exploitation have often
focused on chat room stings, injunctions against websites
hosting child pornography, establishing hotlines and complaint
sites, and image databases [5] [6]. While these efforts have, to
some extent, impeded the spread and access of child
pornography, they are not necessarily the most effective means
of doing so. Specifically, two problems arise from such
intervention strategies. First, there tends to be an overreliance
on investigating and targeting sites in isolation. As a more

effective approach, some argue that law enforcement should
focus on the links between sites and the reliance of individuals
on these networks [7]. This approach acknowledges that the
connections between child pornography sites, and the networks
they form, are important to consumers, and as such, they are a
valuable focus for intervention. Second, current enforcement
efforts have been met with limited success. For instance, it is
estimated that less than 1% of online pedophiles are caught [8].

There is a clear need for more effective strategies for
disrupting online child pornography sites. This can be achieved
through a networks perspective, which has demonstrated its
usefulness in identifying successful attack strategies for various
networks, including the Internet and child exploitation sites [9]
[10]. In identifying appropriate attack strategies, it is important
to consider the topology of the networks [11] [12]. Online
networks have two important structural features: they tend to
follow a power-law distribution and demonstrate small-world
properties. On account of its power-law properties, the Web is
characterized by: (a) many websites with few links and (b) a
few sites with many links [13] [14] [9] [15]. That is, the Web is
distinguished by a few very highly connected nodes, or hubs,
which fundamentally define the network’s topology. Hence, the
Web is described as following a power-law expression with a
scale-free distribution. Furthermore, the Web has been found to
demonstrate small-world characteristics. Despite its vast size
(several billion documents), the average path length within the
Web generally ranges from 16 to 19 [16] [17]. Additional work
by Stanford University has indicated that there is a high degree
of clustering in the Web; that is, the likelihood that two sites,
which are connected to a common neighbour, are also linked to
one another is much greater than expected from a random
network [17]. This finding has been extended to online
networks with illegal content. For instance, [12] found small-
world characteristics in an online terrorist network.

The topology of networks has specific implications for law
enforcement strategies. Research comparing the effectiveness
of random attacks versus targeted attacks on scale-free
networks has found that such networks are resilient to the
former and vulnerable to the latter [14] [18] [12]. Because
poorly linked nodes in scale-free networks appear more
frequently, they will be disproportionately affected by random
attacks. Given that the contribution of these nodes to the
integrity of the network is relatively insignificant, the network
often remains connected [9]. As a result, random attacks tend to



be less effective. However, the robustness of scale-free
networks comes at a cost: repeated attacks targeted at the hubs
can effectively disconnect a network [14].

In their work, [11] also studied which law enforcement
strategies worked best for certain network structures. They
found that the extent to which a network demonstrates small-
world characteristics (e.g., an average of 6 paths separating
nodes), scale-free properties (e.g., contains hubs in which a
node had many connections), and vulnerability features (e.g.,
high fragmentation scores) affected which targeting strategies
were best (e.g., a hub attack, a repeated hub attack, a bridge
attack, or a combination thereof). For example, with small-
world networks, which have high levels of clustering and thus
leave nodes in a position to replace others, repeated attacks on
multiple nodes will most successfully disrupt the network [11].
In contrast, scale-free networks will be best disrupted through
hub attacks [14] [19] [12]. Finally, networks with high
vulnerability, characterized by many actors who bridge
together subgroups, will be susceptible to attacks that disrupt
these bridges, thereby severing the flow of information [8]
[11]. In another study, [12] found that pure scale-free networks
were vulnerable to both hub and bridge attacks, while small-
world networks were more vulnerable to bridge attacks.

[13] [11] [12] introduced broad strategies for attacking
networks. These strategies identify nodes with a particular type
of centrality in the network, each amenable to specific
suggestions for targeting key players. Diverse measures of
centrality have been examined in the literature, the most
common including measures of degree (the number of ties a
node has) and betweenness (the extent to which a node brokers
between others) [20] [22]. Hub attacks target those nodes with
many links to and from other nodes in a network. In this sense,
hub attacks remove those nodes high in degree centrality.
Conversely, bridge attacks sever those nodes that connect other
nodes in a network, those high in betweenness centrality.

Degree centrality and betweenness centrality have
previously been described as useful measures to identify
prominent nodes [23] [24] [25] [26]. However, identifying key
players to target in a network is not necessarily obvious. For
example, [27] argues that traditional measures of centrality
cannot “optimally solve the key player problem” (p. 127). It is
possible for traditional measures to identify a node that, while
central in a network, will cause little disruption if removed.
This would occur if, for example, a node is linked to many
actors, but these actors can still reach each other through
alternative ties when this central node is removed. Conversely,
if many actors in a network rely on a particular node to reach
each other, its removal would have a more significant impact
on the network. Instead of being redundant, this node is integral
to the flow of information in the network, making it a valuable
law enforcement target. To resolve the problem of redundancy,
[27] develops the measure of fragmentation to identify those
actors whose removal would most disrupt the network.

Thus, this paper examines three attack strategies identified
as important in the literature in order to determine which will
produce the greatest disruption in two different online child

pornography networks1. These strategies include hub attacks
(target nodes with high degree centrality), bridge attacks (target
nodes with high betweenness) and fragmentation attacks (target
nodes whose removal would sever the greatest number of
connections). This will allow us to select the strategy that will
cause the largest disruption to the child pornography networks
while expending the least amount of resources.

II. METHODS

To evaluate different strategies of disrupting child
exploitation networks, the method presented in this paper first
extracts a sub-network, which deals with child exploitation
material, from the Web (Section A), and then uses established
SNA tools to guide attacks against the network (Section B).

A. The Child Exploitation Network Extractor (CENE)

Two online networks were used in this project; they were
produced using a custom-written web-crawler called the Child
Exploitation Network Extractor (CENE) [10]. The algorithm
for CENE is located in Figure 1. This crawler is designed to
recursively follow links from a starting website until it meets
specific termination criteria (i.e., a certain number of pages and
websites). As the crawler does this, it collects statistics on the
number of keywords, images and videos on each of the
webpages stemming from that particular website. This
information is then aggregated at the website level. The product
is a mapped network of websites with information on the
content within, and the directed links between, these websites.

Three limits were imposed on CENE to prevent it from
perpetually crawling the Internet. First, a limit of 250,000
webpages retrieved was included to keep the extraction process
time bounded. Second, network size was limited to 200
websites, with webpages sampled as equally as possible
between websites. Third, a set of keywords were defined in an
attempt to ensure that the websites extracted were topic
relevant. This set includes 63 child pornography related words,
many of which were (a) commonly used by the Royal
Canadian Mounted Police (RCMP) to locate illegal child-
related content and (b) used in other studies of online child
pornography [28]. The web-crawler included ‘softcore’ words
such as girl, boy, love, child, teen, variations of Lolita, young,
bath*, twink, pre/post pubescent, innocent, smooth and
hairless. It also included a set of ‘hardcore’ words, such as
penis, cock, vagina, pussy, anus, anal, sex, pedo/paedo, oral,
virgin, naked and nude.

To be included into the network, a webpage had to have at
least seven of the 63 keywords. If it failed to meet this
criterion, the webpage was discarded and no links were
followed from it. It was determined through manual
verification that seven keywords reliably distinguished between
child exploitation webpages and unrelated ones. The web-
crawler also discarded broken links or websites inaccessible for
other reasons (including timeouts or password barriers). Videos
and images from each webpage were also recorded. In order to
avoid including very small images such as logos and

1
Other potential key player measures were examined, including Bonacich

centrality, Freeman closeness, point connectivity, and cutpoints. However,
they did not emerge as important disruption measures.



emoticons, images were recorded only if they were 150x150
pixels or larger. No requirement was imposed on videos.

For this study, two networks were extracted using different
starting websites, one referred to as Network A and another as
Network B. Network A was identified as girl-centered, where
more than half of the keywords on websites included female-
related terms such as vagina Lolita, girl, and so on. Network B
was boy-centered, with websites including mostly male-related
terms as penis and boy. Given the keyword requirements, these
networks were expected to include websites or blogs with child
pornography or other child exploitative materials.

While CENE provides a useful way of uncovering online
child pornography networks, it is not without limitations. For
instance, given the nature of some of the keywords, there is the
possibility of false positives (for example, it is possible for a
website to include words such as child, girl, boy, young, teen,
and innocent, and not be about child exploitation). Nonetheless,
these websites may link to child pornography or vice-versa. In
this way, they play a role in the network that may also be
relevant to examine. A further limitation of the web-crawler is
its inability to analyze content from, and follow links out of,
password protected websites. Consequently, these websites

were not captured in the networks. Nonetheless, CENE remains
a helpful method for extracting networks of child exploitation
websites.

B. Social Network Measures

This paper seeks to identify the most effective social
network analysis measures to disrupt online child pornography
networks. For this purpose, various attack strategies were used
to identify particular sites whose elimination would have the
largest impact on specific outcome measures. These attack
strategies involve hub attacks (using the measure of degree
centrality), bridge attacks (using the measure of betweenness),
fragmentation attacks (using the measure developed by [27]),
and random attacks (where each node has an equal chance of
being targeted).

With the exception of random attacks, each of these
network disruption strategies identifies key players who are
central to the network in varying ways. For hub attacks, the
degree centrality measure examines the number of ties that a
node website has to other websites. The underlying assumption
of this measure is that nodes with many connections are more
likely to be powerful since they can directly influence more

Algorithm CENE(StartPage, PageLimit, WebsiteLimit, Keywords(), BadWebsites(), minImageWidth, minImageHeight)

Queue() ← {StartPage}

KeywordsInWebsiteCounter() ← 0, LinkFrequency() ← {}, WebsitesUsed() ← {}, FollowedLinks() ← {}
//initialize variables

while |FollowedPages| < PageLimit and |Queue| > 0

P ← Queue(1), DP ← domain of P //start evaluating next page in queue

if DPWebsitesUsed() and |WebsitesUsed| < WebsiteLimit then

WebsitesUsed() ← WebsitesUsed() + DP

if DP WebsitesUsed() and DPBadWebsites() then //evaluate this page

PageContents ← Retrieve page P

VideoCounter ← 0, ImageCounter ← 0

FollowedPages ← FollowedPages + P

if PageContents contains Keywords()

KeywordsInWebsiteCounter() ← get frequency of all Keywords()

LinksToFollow() ← all {href} elements in PageContents

for each L in LinksToFollow()

if L links to an image

ImageContents ← retrieve image I //if the link leads to an image

If width(ImageContents) > minImageWidth and height(ImageContents) > minImageHeight then

ImageCounter ← ImageCounter + 1 //count only if the image is big enough

elseif L links to a video //if the link leads to a video

VideoCounter ← VideoCounter + 1

elseif LQueue() and LFollowedPages

Queue() ← Queue() + L

DL ← domain of L

LinkFrequency(DP, DL) ← LinkFrequency(DP, DL) + 1

VideosInWebsite(DP) ← VideosInWebsite(DP) + VideoCounter

ImagesInWebsite(DP) ← ImagesInWebsite(DP) + ImageCounter
KeywordsInWebsite(DP) ← KeywordsInWebsite(DP) + KeywordsInWebsiteCounter()

return WebsitesUsed(), KeywordsInWebsite(), LinkFrequency(), VideosInWebsite(), ImagesInWebsite()

Figure 1. Algorithm CENE



actors, access more resources in a network, and are less
dependent on other actors since they have alternative means for
fulfilling their needs [29]. Our networks have directed ties;
some websites link to others (out-degree ties) while some
websites are linked to by others (in-degree ties). Websites with
many in-degree ties may be considered more important or
prominent; a website can easily link to others, but it may not be
relevant or interesting enough to receive links from other
websites. By virtue of their ability to attract traffic, popular
sites may be important law enforcement targets. Websites with
out-degree ties are also valuable to consumers, as they may
connect them with many other websites, thus providing them
with abundant access to materials in the network.

For bridge attacks, betweenness centrality identifies those
websites that fall on the shortest path between other websites in
a network [29]. It describes the extent to which a website
‘brokers’ between other websites. In a network, this position
can be advantageous, as it allows certain websites to bridge
groups and control the flow of information between actors [11].
For interested individuals, these websites are important insofar
as they provide access to various parts of a child pornography
network that would otherwise be more difficult to reach.

Key players were also identified through a fragmentation
analysis. This measure indicates the proportion of sites that
would not be able to reach each other if any particular site was
removed [27]. This produces disconnections in the network that
would limit an individual’s ability access to other websites.

The removal of websites identified by these measures
followed a sequential process which involved (a) identifying
the website that scored highest for one measure, (b) removing
it, and (c) reanalyzing the network to identify the next top
website. This process was repeated until five websites were
eliminated. This strategy avoids the potentially redundant effect
of eliminating certain websites simultaneously [27] [12] [30].

The impact of removing the five websites that scored
highest on the three centrality measures was then examined on
several outcome measures. The first outcome measure included
is network density. Density is calculated by dividing the
number of existing ties in a network with the number of
possible ties [29]. Assessing the changes in density is valuable,
since it examines the changes in the amount of ties. The more
ties that are eliminated in a network, the more difficult it is for
individuals to reach other websites. Change in the overall
clustering of the network was also assessed. The clustering
coefficient is the average density of the neighbourhoods of the
websites in a network [29]. In other words, it examines the
likelihood that two websites, which are linked to one particular
website, are also linked to one another. As with the overall
network density, by eliminating certain websites, and therefore
certain ties within a cluster or a neighbourhood, access to
materials within a network becomes more difficult. In addition,
this prevents consumers from becoming embedded in a tightly-
knit community that promotes their views and interests.

Finally, two measures of network cohesion were examined:
distance between pairs and distance-based cohesiveness. The
distance between pairs examines the average number of paths
required for a site to reach other websites in the network [29].
For the purposes of this paper, a measure that produces the

greatest reduction in this measure is sought. While this may
seem counterintuitive, it is important to note that this measure
only calculates the distance between reachable nodes. As such,
a drop in the average path length in a network after an attack
can be attributed to the fact that fewer websites are now
reachable. Conversely, distance-based cohesiveness represents
the extent to which a network is compact (i.e., overall, how
close websites are to each other). Again, greater cohesiveness
suggests a better flow of information and more linkages
between websites in a network; consequently, a decrease in this
measure would further impede an individual’s efforts to easily
reach child pornography.

III. RESULTS

A. Descriptive Features

The structure of both networks was first assessed. Network
A had a total of 46 nodes and 150 ties, while Network B had
111 nodes and 663 ties (table 1). The difference in size exists
because that web-crawler visited all links outside of a website
and subsequently analyzed its content to determine whether or
not it would be included in the network. If the website did not
meet the necessary criteria, it was not included in the network;
however, it still counted in terms of 200 website limit imposed
on the web-crawler. For example, in Network A, 154 websites
were considered irrelevant while 46 were found relevant.

When examining the network structure, Network A had a
higher density than Network B (0.073 vs. 0.054), a higher
clustering coefficient (0.442 vs. 0.424) and a higher average
path length (3.490 vs. 2.409). However, Network B
demonstrated greater compactness (0.200 compared to 0.131
for Network A). Thus, although there is more information (i.e.,
websites) available Network B, this information was more
difficult to access, given that fewer links exist between
websites. The centralization of the networks was also
examined; this measure expresses the overall degree of
variance in network centrality as a percentage [29]. Both
networks had similar out-degree centralization (approximately
twenty percent for Network A and twenty-one percent for
Network B), but differed largely in terms of in-degree
centralization (approximately thirteen percent and twenty-two
percent respectively). This demonstrates some concentration of

TABLE I. NETWORK DESCRIPTIVES

Network

Measure Network
A

Random
Network

A

Network
B

Random
Network

B
Nodes 46 46 111 111
Ties 150 150 663 663

Density 0.0725 0.0725 0.0543 0.0543
Clustering
Coefficient

0.442 0.083 0.424 0.056

Average Path
Length

3.49 3.172 2.409 2.809

Distance-Based
Cohesion

0.200 0.354 0.131 0.398

Centra-
lization

Out 19.852% 10.765% 21.124% 5.562%
In 13.037% 10.765% 22.041% 9.231%



out-going and in-going links within certain nodes in the
networks. The exception is with Network A’s in-degree
centralization; there were fewer websites that dominate in
terms of receiving links.

Both networks tend to display small world characteristics.
For instance, both had an average path length shorter than the
six, which is considered characteristic of small worlds [31]. In
addition, both child pornography networks had higher (more)
clustering than randomly generated networks, though these
were more compact than the child pornography networks.
Network A had a compactness or distance-based cohesion
score of 0.200, whereas the random network had a score of
0.354. However, for clustering, Network A scored 0.442,
which was much larger than the random network’s score of
0.083. Similarly, Network B had a compactness score of 0.131,
whereas the random network had one of 0.398. With respect to
clustering, Network B scored 0.424, while the random network
scored 0.056. The small average path length and relatively high
degree of clustering are characteristic of small worlds.

Network A and Network B also had features seen in scale-
free networks. For example, the networks showed greater
centralization than the random ones (safe in the case of
Network A’s in-degree centralization, where the difference was
more modest). For example, Network B had an in- and out-
degree centralization of around twenty-one percent, which was
more than double that of the random network. This indicates

that Network A and Network B have more hubs than would be
expected from a random network; a property identified in
networks following a power-law distribution.

B. Density

For both Network A and Network B, the most effective
strategy to reduce network density was to target those (five)
websites with the highest degree centrality (i.e., to perform hub
attacks) (see table 2). For Network A, the density fell from
0.0725 to 0.0500 for the out-degree measure while the number
of ties dropped from 150 to 82. When the websites with the
highest number of in-degree ties were removed, density fell to
0.0506 with 83 ties left. It is worth noting that removing
websites that scored highest in betweenness, had the same
impact as removing websites with the most in-degree ties.
Thus, for Network A, both hub and bridge attacks were
similarly effective. To illustrate the sequence of events, figure
3 shows the before and after process by which the original
network is changed when the websites highest in out-degree
scores are removed (circled in the figure). Most of the targeted
websites are located in the hub to the right of the original
network; in addition, as seen in graph b), the network is now
fragmented into three separated components with four isolates.

Hub attacks were also most effective for Network B.
Removing websites with the most out-degree ties produced the
largest reduction in network density (0.0543 to 0.0442). The
number of ties fell from 663 to 492. The original and resulting

a) Before a) Before

b) After b) After

Figure 2. Network A before and after Out-Degree Attack Figure 3. Network B before and after Out-Degree Attack



networks are shown in figure 4. It can be seen from graph b)
that the network was fragmented into two separate components
following the attack. The in-degree measure was relatively less
effective at reducing density (though more effective than other
measures). The density fell to 0.0455 with 506 ties remaining.
This suggests that a more nuanced approach to hub attacks may
be useful in certain cases.

As for random attacks, the density almost did not change
for any of the two networks. This made it the least effective
strategy for decreasing network density.

Note that hub attacks against Network A produced more
disruption than the same attacks against Network B. For
instance the out-degree attack on Network A created a 38.76%
reduction in density, whereas this attack only produced an
18.60% reduction in Network B’s density. Network size best
explains this finding, as the removal of 5 nodes in smaller
network A had a larger effect than for a network more than
double its size.

C. Clustering Coefficient

In terms of reducing the clustering coefficient, degree
centrality measures were once again the most effective strategy
(see table 3). However, differences between the two networks
emerged: for Network A, removing the five websites that
scored highest for in-degree ties was the most effective strategy
whereas removing the five websites with the highest out-degree
scores was most successful in Network B.

When removing nodes with the highest in-degree scores,
the clustering in Network A fell by 6.108% (to 0.415).
Removing websites high in out-degree ties was half as
effective, with the clustering coefficient dropping by 2.941%
(to 0.429). For the Network B network, the only measure to
reduce clustering was the out-degree one; all other measures
slightly increased network clustering. This may be due to the
removal of nodes with weak ties and relatively large distances
from other nodes. When websites with the most outgoing links
were removed from the network, the clustering coefficient
dropped from 0.424 to 0.422 (0.471%). Again, these findings
indicate that, in a directed network, it may be important to
differentiate between in-degree and out-degree hub attacks.
When the networks were attacked randomly, a small 0.001
reduction in the clustering coefficient was produced in Network
A, whereas the clustering in Network B increased by 0.800.

Between networks, Network A was once again more easily
disrupted by the hub attacks. The clustering fell by 6.108% in
Network A, whereas it decreased by 0.471% in Network B.
Furthermore, most measures in Network B actually increased
clustering and the only measure to decrease it had a modest
impact of 0.471%. This suggests that certain changes to
Network B are prone to leaving it with more tightly-knit
groups.

D. Distance-Based Cohesion and Average Path Length

Differences between networks also emerged for which
measure produced the largest reduction in distance-based
cohesion (see table 4). For Network A, targeting websites with
the highest betweenness scores resulted in the largest decrease
of cohesion (0.131 to 0.085). In this sense, a bridge attack was
the most successful attack strategy. In contrast, for Network B,
the fragmentation measure was the most effective, reducing
cohesion from 0.200 to 0.073. For Network A, random attacks
increased compactness from 0.200 to 0.207, whereas
compactness was decreased from 0.131 to 0.129 in Network B.
For Network A, this is the only attack that increased the
network’s cohesion; it is likely that distant, poorly connected
websites were targeted by the random attack.

When the networks are compared, it can be seen that the
fragmentation attack against Network B was more successful at
reducing cohesion than Network A’s bridge attack. In Network
B, the network’s compactness fell by 63.50%, whereas in
Network A, it decreased by 35.11%. Notably, Network B’
network was initially far more compact than Network A, with a
distance-based cohesion of 0.200 compared to 0.131 for
Network A. Thus, differences are more easily seen when
Network B’ network is fragmented.

As for the average path length, the fragmentation analysis
produced the greatest reduction in the measure for both
networks (see table 5). A reduction in this measure is desired
on account of its implications: when the average path length
decreases, it is only because fewer nodes have become
reachable in the network. For Network A, the average path
length decreased from 3.49 to 1.85, while the number of paths
in the network fell from 1021 to 230. In contrast, a random
attack increased the path length to 3.57; while this has the
effect of increasing the time to reach other websites, more of
these websites are still reachable (that is, 859 possible paths
remained). In the fragmentation analysis for Network B, the
average path length fell from 2.409 to 1.741, while the number
of paths dropped from 1447 to 1164. Conversely, random
attacks increased the path length to 2.414, with 2752 paths
remaining. Again, random attacks were far less effective than
targeted ones.

TABLE II. DENSITY

Network
Measure Network A Network B

Density
(Change)

Ties
Left

Density
(Change)

Ties
Left

Fragmentation 0.0561
(22.62%)

92 0.0482
(11.233%)

537

Betweenness 0.0506
(30.207%)

83 0.0469
(13.627%)

522

Degree Out 0.0500
(31.034%)

82 0.0442
(18.6%)

492

In 0.0506
(30.207%)

83 0.0455
(16.206%)

506

Random Attack 0.0732
(0.551%)

120 0.0541
(0.368%)

602

TABLE III. OVERALL CLUSTERING COEFFICIENT

Network
Measure Network A Network B

Fragmentation 0.514 (16.289%) 0.430 (1.415%)
Betweenness 0.438 (0.09%) 0.426 (0.471%)

Degree Out 0.429 (2.941%) 0.422 (0.471%)
In 0.415 (6.108%) 0.434 (2.358%)

Random Attack 0.441 (0.226%) 0.432 (1.886%)



Furthermore, the fragmentation attack was particularly
effective for Network A; the average path length decreased by
46.934% compared to 27.729% for Network B. The path length
was initially larger for Network A (3.49) than Network B
(2.41), indicating that more pathways between websites existed
in the Network A network. Yet, given Network A’s smaller
network, the elimination of key websites would likely be more
devastating to this network’s structure.

IV. DISCUSSION

The purpose of this paper was to isolate those attack
strategies (hub, bridge, fragmentation) that would maximally
disrupt two online child exploitation networks. In doing so, this
study extends past research on disruption strategies [27] [12].
Two online networks were used: a smaller girl-centered one
(Network A) and a larger boy-centered one (Network B). Both
of these were extracted using CENE, a web-crawler tailored to
follow the links out of and into child exploitation websites
when given a specific starting website. Three general findings
emerged: (1) targeted attacks are more effective than random
ones; (2) for different outcome measures (density, clustering,
distance), different intervention strategies are warranted, and
(3) for different networks, different attack strategies are more
or less effective. As predicted by [14] randomly removing
websites failed to produce as much damage to the networks as
targeted attacks. Furthermore, the effectiveness of various
types of targeted attacks (hub, bridge, or fragmentation) varied
according to different law enforcement goals (reducing density,
clustering, reachability or cohesion).

When the goal is to eliminate as many ties as possible in a
network (i.e., reduce density) and/or to reduce a node’s
embeddedness in a tight-knit component of the network
(clustering), hub attacks are the most effective strategy overall.
This type of attack removes nodes high in degree centrality,
which impedes an individual’s ability to access websites in a
network, as the links between them has been eliminated. [11]
[19] [12] have also stressed the importance of hub attacks,
identifying them as useful strategies for disrupting small-world
and scale-free networks similar to Networks A and B. The
current research extends this discussion by specifying for
which outcome measures hub attacks are effective (i.e., density
and clustering). Hub attacks may not benefit scale-free, small-
world networks for other outcome measures. Instead, different
attack strategies may be suitable. For example, [27] introduced
the fragmentation measure, which was found to be more
successful at reducing reachability within a network. As such,
knowledge of the underlying network structure is not
necessarily sufficient for selecting appropriate attack strategies;
the end goal or outcome measure is also relevant.

Nonetheless, the network structure remains important. [11]
[19] [12] have recognized that differences in network structure
produce variation in the effectiveness of certain attacks.
However, there is great diversity and complexity between and
within networks, the implications of which have not necessarily
been teased out by these researchers. For example, within
networks, it may be important to differentiate between in-
degree and out-degree hub attacks, as one approach may be
more effective than the other. The direction of these links has
certain implications in terms of network disruption. By
eliminating websites that others link to the most often (in-
degree), potentially relevant and important websites have been
removed from the network. In contrast, by eliminating websites
that are prolific linkers (out-degree), an individual’s ability to
spread through the network is inhibited. It is also possible for a
network to have more than one effective attack strategy. For
instance, both hub and bridge attacks were similarly effective at
reducing density in Network A because some of the same
nodes were targeted. Targeting websites high in betweenness
can also be a valuable strategy, as this eliminates the bridges
between websites, thereby impeding a person’s exposure to
diverse child pornography materials and potentially
constraining him or her to small parts of a network.

In addition, certain network structures appear to be easier to
disrupt; for instance, attacks against the smaller, denser
Network A generally had a greater impact than those on the
larger Network B. [11] indicated that, for small world
networks, repeated attacks were necessary to maximize
disruption; this was indeed the case for Network B, the larger,
more compact network with a shorter average path length. For
such networks as Network A, fewer resources may need to be
expended to satisfactorily destroy the network. In essence, this
study found that it is important not only to consider the desired
outcome for an attack, but also the particular network structure
being attacked. This leads to a more nuanced approach to
network attacks.

There are several limitations to this study. As previously
mentioned, it is possible for the networks to include false
positives; i.e., websites that do not involve child exploitation.
This is difficult to avoid; however, attempts to minimize false
positives were made with the seven keywords requirement.
Furthermore, given that these websites link to or from child
pornography, they arguably remain, to some extent, relevant to
the network structure. The small size of the networks is also
problematic considering the millions of available child
pornography websites. As such, the networks used may
represent only a mere fraction of a more complete network.
Limitations to the web-crawler may also have inhibited the
extraction of complete networks. For instance, it is possible
that some of the most relevant or severe child pornography

TABLE IV. DISTANCE-BASED COHESION

Network
Measure Network A Network B

Fragmentation 0.093 (29.007%) 0.073 (63.50%)
Betweenness 0.085 (35.114%) 0.075 (62.50%)

Degree Out 0.103 (21.374%) 0.082 (59.0%)
In 0.119 (9.16%) 0.434 (117.0%)

Random Attack 0.207 (58.015%) 0.129 (35.50%)

TABLE V. AVERAGE PATH LENGTH

Network
Measure Network A Network B

Fragmentation 1.852 (46.934%) 1.741 (27.729%)
Betweenness 2.014 (42.292%) 1.812 (24.782%)

Degree Out 2.738 (21.547%) 1.980 (17.808%)
In 3.431 (1.69%) 2.049 (14.943%)

Random Attack 3.574 (2.406%) 2.414 (0.207%)



websites were password protected; this would prevent CENE
from accessing them and as such, they (and the websites they
link to) would not be included in the network.

V. CONCLUSIONS

This project sought to determine which attack strategies
would most successfully disrupt online child pornography
networks. These networks were extracted using CENE, a web-
crawler designed to follow, and gather information on, child
exploitation websites. It was found that the most effective
attack strategies depend on both (a) the specific law
enforcement goals or outcome measures and (b) the particular
structure of the network.

This has practical implications in terms of focusing the
effective use of police resources and decreasing the
accessibility of online child pornography. Pairing the web-
crawler with social network analyses help target prioritization
by identifying websites that would maximally disrupt the
network given its structure and the desired outcomes. This
would most effectively limit an individual’s ability to travel
through networks and access increasing amounts of child
pornography. The current study provides methodological
guidelines on which to base such decisions.

Future work should adopt longitudinal designs. Tracking the
way networks evolve as specific nodes are attacked and
removed from it should be a priority. Within the context of the
current study, monitoring changes in site linkage behavior
would provide a promising start point for such research. It is
also possible that certain networks recover from, or adapt more
easily to, specific attacks [32]. In addition, the manner in which
a network reacts to changes may create a new context that
modifies which attack strategy is most effective. This type of
research can also be extended to other types of illicit or “dark”
networks online. With some modifications to the web-crawler,
networks of websites that promote terrorism, drug use, or other
illegal behavior can be extracted. This allows for the replication
and extension of the results of the current study.
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