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Abstract—The growth in both frequency and severity of gun
violence in the United States has necessitated increased research
into prevention, despite the lack of funding. Comprising more
than 60k gun violence media articles with a total data size
of 520 MB, the gun violence database (GVDB) was developed
to assist natural language processing researchers in developing
and testing prevention methods. Original research based on the
GVDB utilized a span-selection model to extract shooter and
victim information, but their works might potentially trim out
important span candidates. We proposed a new approach to
improve identification accuracy and recognize every token in a
sentence using a sequence tagging technique. We implemented
a BIO sequence tagging model at the token-level using BERT,
then further classified each token using LSTM, BiLSTM, and
CRF. We found that utilizing BERT as an embedding layer, and
decoding word representation as a sequence tagging task, im-
proved shooter/victim identification compared to a span-selection
model. We believe that if this improved model is combined
with gun violence related keywords, automated techniques could
be implemented to identify precursors/risks to gun violence on
social media, allowing for intervention by law enforcement or
community agencies before escalation to deaths.

Index Terms—NLP, natural language processing, BERT, trans-
former, sequence tagging, BiLSTM, CRF, gun violence

I. INTRODUCTION

There were 14,414 firearm homicides in the United States
in 2018, growing to 19,141 in 2019 [1]. While the increase in
deaths is problematic, news media also report that escalating
gun violence has had a significant impact on mental health
[2]. As a result, the growing gun violence is not only a social
safety issues, but also a public health issue.

The rise of social media has amplified gang violence
[3][4], which has always been a key factor in fears and
occurrences of firearm homicides in the United States. This is
because there is a growing trend of gang-involved youth using
social networking websites to engage in ‘internet banging’
[5]. Internet banging involves using social media and chat
rooms to publicly invalidate rival gangs’ strength, toughness,
and masculinity [6], and gain notoriety, by bragging about
participation in violent acts, communicating about impending
threats of violent acts, and/or broadcasting gang affiliations
[7][8]. These online actions can be, and have been, precursors
to real-world violence [9][10].

Social and violence outreach workers have turned to social
media posts by gang members to identify potential risks for
escalation to real-world violence [11]. However, the substantial

number of posts appearing on social media makes this manual
process impractical. As a result, automated techniques for col-
lecting relevant information, using natural language processing
techniques, have been proposed [12][13]. However, nuances to
the context and sentiment of language, including gang names
versus given names, racial profiling, and interpreting imagery,
highlight the challenges of using automated techniques to
interpret text [14][15][16][17][18].

As internet banging surges in the United States, we propose
a new model to more accurately identify names of potential
shooters and targets/victims from social media posts. By
improving accuracy, we believe that this can later be combined
with other methods [12], that focus on gun violence keywords
and the sentiment of keywords, to better flag posts that
may include threats and be precursors to gun violence. This
information can then be used by community gun violence
prevention organizations and/or law enforcement to prevent
escalations to violence.

In 2016, Pavlick et al. [19] developed the gun violence
database (GVDB), which consolidated news reports/articles
about gun violence, using natural language processing (NLP)
annotations. Ebner et al. [20] proposed new baseline models
that predicted the value (argument) for each slot (role) to
retrieve target (e.g., names of people) information. In this
paper, we continue previous work using the GVDB to build
novel models to more accurately identify targets from a
sentence or a document than benchmark, baseline, models
[20]. Regarded as the ‘sequence tagging problem’, we sought
to tag each word or token with a different label, similar to
Part-of-Speech (PoS) and Named Entity Recognition (NER).
For example, in NER there is a PERSON tag that indicates
whether a given token is a person’s name or a person. Instead,
we sought to use a BIO tagging method, short for beginning,
inside, and outside [21], marking each word with their position
of being targets or non-targets. We analyze the characteristics
of each word and evaluate their combination.

Furthermore, we utilize Bidirectional Encoder Representa-
tions from Transformers (BERT) [22] at the word embed-
ding layer and compare the implementation of Long Short-
Term Memory (LSTM) [23], Bidirectional Long Short-Term
Memory (BiLSTM), and Conditional Random Field (CRF)
[24] to classify each token. Our main contribution was to
present a new approach to better identify shooters/victims by
converting span-selection problem into sequence tagging ones
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using BERT and deep learning neural networks.

II. RELATED WORKS

In this section, we will introduce GVDB, BERT, the evalua-
tion benchmark from Multi-Sentence Argument Linking [20],
and the BIO tagging method.

A. Gun Violence Database

GVDB was developed through crowd-sourced annotations
of local news and television reports of gun violence throughout
the United States [19]. Articles were automatically catego-
rized, using a high-recall text classifier, and then vetted by
humans to filter out false positives. The database consists
of 5,394 annotated articles with shooter/victim information.
Using an off-the-shelf information extraction system, [19]
obtained a 4.7% precision and recall score (F1) on shooter’s
information, which is calculated using the following (1).

F1 = 2 ∗ Precision ∗ Recall

Precision + Recall
(1)

Specifically, they provided the string of the target infor-
mation and the span of the information. For example, in an
article with the following: ”... Lamesa police are investigating
the shooting death of Dominique Adams, who died Tuesday
afternoon on his way to UMC...”, the target is annotated with
the index from the 346th character to the 361st character, and
the value of ’Dominique Adams’ (see Fig. 2).

B. BERT

Bidirectional Encoder Representations from Transformers
(BERT) [22] pre-trained using unlabeled corpus with two
different pipelines, masked language model and next sentence
prediction. Masked language model is used to predict a token
from a sentence, while next sentence prediction is used to
classify the relationship between two sentences. In Fig. 1,
these pre-training processes rely on the attention mechanism
to encode input features [25] which learn the essence of
human languages. BERT can be fine-tuned with downstream
NLP tasks. In our case, we utilized this characteristic to
run sequence tagging on token-level classification. In other
words, we used BERT as our embedding layer and further
implemented token-classifier as the downstream task.

C. Multi-Sentence Argument Linking

Ebner et al [20] proposed a multi-sentence argument link-
ing model using slot filling, to extract information at the
document-level. First, their model consisted of BERT at the
embedding layer, to extract the representative text spans.
Text spans are slices of a document or a sentence and are
usually represented with the start position and the end position
from a sentence as in Fig. 2. This was used to calculate
the representation of spans to convert human language into
math vectors that a machine could understand. Second, they
pruned extra span collections, to leave the most possible spans.
Third, they introduced a new link scoring function, which
took the distance between the ”event” and ”candidate” spans
into consideration within the feed-forward neural network.

Fig. 1. Model Architecture of Encoder from Transformer [22]

Fig. 2. Example of Text Span

Fourth, learning and then decoding steps were incorporated,
to maximize the probability of one candidate as the predicted
result.

The analysis by [20] consisted of a training set of 5,056
articles, a development set of 400 articles, and a test set of 500
articles. Articles from GVDB without a reliable publication
date or lacking annotated spans were excluded from the
training set, as were 100 articles spanning the week between
the development and test datasets, to limit the possibility of
data occurring in both datasets.

D. BiLSTM-CRF for Sequence Tagging

Inspired by [26], we also implemented BiLSTM archi-
tecture, but with BERT at the embedding layer. This was
implemented because it can efficiently take input features
forward and backward at the same time and feed the output
into the CRF layer. In the CRF layer, we first compute
log likelihood with tagged information and then decode the
most probable sequence of tags. CRF utilize neighbor tag



Fig. 3. Example of Beginning-Inside-Outside Tagging

information to predict the current tag, and in general it has
been shown that CRF can produce better accuracy.

III. METHODOLOGY

In this section, we discuss the methodology for pre-
processing, word embedding, sequence tagging classifying,
and evaluation.

Instead of calculating the probabilities of spans to extract
target information [20], we classify each of the tokens, through
BIO tagging, to see if that token is part of the target. Hence,
the main difference we implement, compared to [20], is how
we predict the target. Specifically, we use the combination of
LSTM, BiLSTM, and CRF to classify tokens after getting the
word representation from BERT.

A. Pre-process

In order to do BIO tagging, we tagged every token, or
every word, with either B, I, or O. B marks the beginning of
the target token, I marks the rest of the target tokens, and O
means null. Illustrated in Fig. 3, ”Dominique” is marked as the
beginning of the target, and ”Adams” is tagged as the inside
of the target. Also, because there might be multiple targets
mentioned in an article, all targets were tagged with ”B” and
”I” for training. Moreover, to make the sequence length of each
sample in the batch consistent, we appended empty strings
tagged as O (null) at the end of the sequence. For example,
when the max sequence length was 256, and one sample only
contained 200 tokens, that data sample was padded with 56
”O” at the end.

B. Embedding Layer

We utilized BERT as a word embedding layer. BERT is a
way to convert the human language to a mathematical vector
that a computer can understand. Each word has its own vector
that represents a meaning for computers. We took the last
hidden state from BERT with the default dimension (768) and
fed it into the following pipeline.

C. Sequence Tagging Classifier

We utilized Long Short-Term Memory (LSTM), BiLSTM,
and Conditional Random Field (CRF) to further classify each
word or each token. Hence, each token was pre-labeled as
B, I, O which are frequently used in sequence tagging NLP
tasks. We implemented 6 different models: BERT (Fig. 4),
BERT-LSTM (Fig. 5), BERT-BiLSTM (Fig. 6), BERT-CRF,
BERT-LSTM-CRF, and BERT-BiLSTM-CRF (Fig. 7). We
did not show the model architectures of BERT-CRF and

Fig. 4. Model Architecture of using BERT for Sequence Tagging

BERT-LSTM-CRF because the difference between BERT-
Linear/BERT-LSTM/BERT-BiLSTM and BERT-CRF/BERT-
LSTM-CRF/BERT-BiLSTM-CRF is that we replaced a feed-
forward layer with a CRF layer. The final output was sent to
a softmax layer used to normalize the probabilities of three
labels (BIO).

In Fig. 4, the architecture is the same as sequence tagging
models (POS or NER) in [22]. In Fig. 5, the output from
BERT was passed to an LSTM layer and another feed-forward
layer. In Fig. 6, the output from BERT was passed to a
BiLSTM layer, and internally, the representations were passed
to a forward LSTM layer and a backward LSTM layer at the
same time. We found that summing up forward LSTM and
backward LSTM outperformed concatenating them. Hence,
we chose to sum up forward LSTM and backward LSTM for
BERT-BiLSTM and BERT-BiLSTM-CRF. For simplicity, the
dimension of the LSTM’s hidden states we used was the same
as the output dimension of BERT - 768. Because BERT-CRF,
BERT-LSTM-CRF, and BERT-BiLSTM-CRF were similar to
the first three models, we only show Fig. 7 as an example
for CRF. Inspired by [27] and [28], we implemented BERT-
LSTM-CRF and BERT-BiLSTM-CRF on sequence labelling
tasks. However, [27] used BERT-LSTM-CRF for NER on
information extraction of municipal solid waste crisis, and [28]
utilized BERT-BiLSTM-CRF with BIO tagging for NER on
Chinese electronic medical records.

D. Evaluation

To evaluate the performance of the models, we first ex-
tracted predicted targets from BIO tagging method and com-
pared predicted results with actual targets using exact match or
strict match. From the output of the neural network, there were
1-dimension vectors with 3 float values as the probabilities
of ”B”, ”I”, and ”O”, and each token was classified based
on probabilities. After each of the tokens were classified as
”B”, ”I”, ”O”, we looked for the words that were classified
as the combination of B and I. Take an example in Fig.
8, ”Dominique” was classified as ”B”, and ”Adams” was
classified as ”I”, then ”Dominique Adams” was classified
as the target. When there were multiple targets that were
classified, we evaluated the probability of the token that was



Fig. 5. Model Architecture of using BERT-LSTM for Sequence Tagging

Fig. 6. Model Architecture of using BERT-BiLSTM for Sequence Tagging

Fig. 7. Model Architecture of using BERT-BiLSTM-CRF for Sequence
Tagging

Fig. 8. Evaluation when Multiple Targets

marked as ”B” (0.4 and 0.7 in Fig. 8), and the target with the
highest probability was treated as the ’true’ target. ”Police”
and ”Dominique” were both classified as ”B” because the
probability of being ”B” on ”police” (0.4) was the highest
compared to the probability of being ”I” (0.25) and the
probability of being ”O” (0.35). But ”Dominique Adams” was
predicted as the true target because ”Dominique” gave the
highest probability as a B tag (0.7 is greater than 0.4). We
considered the prediction as a true positive only if the predicted
result was exactly the same as the original target value. We
used the testing set separated in [20] to evaluate our model.

IV. EXPERIMENT

In this section, we discuss the structure of the GVDB dataset
and how we set up the experiment in terms of software and
hardware.

A. Dataset

In GVDB, they collected news articles related to gun
violence and annotated each article with shooters’ and victims’
information such as name, age, and gender. We used the
separated dataset in [20] that was composed of almost 18 MB
texts and 6,292 samples. We only focused on extracting the
name of the target, so we extracted the full text of the article
and the targets’ names. Furthermore, we tagged each word
using BIO sequence tagging technique.

Due to the nature of BERT, BERT’s tokenizer [29] will
convert some tokens into multiple subtokens. In order to
solve the inconsistency between the number of tokens and the
number of tags, we tagged subtokens based on the previous
tokens. For example, ”Alvin” might be converted to ”Al” and
”##vin”, and in this case, ”Alvin” was originally tagged with
B, so after tokenization, we tagged ”Al” as B and ”##vin” as
I. If the original token was tagged as O, then all the subtokens
were O as well. The idea was borrowed from [30].

B. Experiment Setup

We used Pytorch and Huggingface’s transformers [29] to
build our models. And we did experiments using the setup
parameters below in Table 1.

Note that, although we included 128 as one of max sequence
length, 128 is still too small to cover most of the dataset during
training and evaluation; hence, we suggest 256 or more than
256.

The parameters in Table 1 were based on our experiments
starting from smaller values of each, and the chosen values
showed conspicuous results.



TABLE I
SOFTWARE VERSION

Hyperparameter Value
Nvidia Driver 470.57.02

CUDA 11.4
Pytorch 1.8.0

GPU 8 GB GeForce RTX 3070
learning rate 1e-05, 5e-05, 2e-06, 5e-06

batch size 2, 4, 6 , 8, 10
max sequence length 128, 256, 512
LSTM hidden layers 768

baseline 0.0001
patience 10

Also, we implemented early stopping on our models, and we
stopped training if a model was not improving for a certain
amount of times that was the definition of ”patience”. We
defined two scenarios in which a model did not improve: the
loss was going down each epoch or the loss was lower than a
baseline value. First, we tried fixed epochs and observed that
most of the models converged after the loss was under roughly
0.001, so we set a baseline value of 0.001 with a epoch number
of 50. Furthermore, we found that the best patience value was
10 as to even out the occurrences of two scenarios.

Algorithm 1 Early Stopping Algorithm
Input: baseline, patience

1: Initialization :
2: lowest ← NULL
3: count ← 0
4: for epoch = i to N do
5: for batch in batches do
6: Train model
7: Calculate loss
8: end for
9: if lowest is NULL then

10: lowest ← loss
11: else if loss ≤ lowest then
12: lowest ← loss
13: count ← count + 1
14: else if loss ≤ baseline then
15: count ← count + 1
16: end if
17: if count ≥ patience then
18: Stop training
19: end if
20: end for

We performed a grid search on hyperparameters to find the
optimal result for each model. In general, when the learning
rate was relatively lower than others(Table 1), the result took
longer epochs to converge. Using larger batch sizes also
required more epochs. As a result, the best combination often
fell on a learning rate of 5e-06, a batch size of 2, a number
of epoch of 20, and a max sequence length of 256. Our
experiments and models have been published [31].

V. RESULTS AND DISCUSSION

In this section, we provide our results and discuss our model
performance.

We compared the performance of our sequence labelling
models for shooter (Table 2) and victim (Table 3) name
identification for precision, recall, and F1 (combination of pre-
cision and recall), to those from the original GVDB analysis
[19] and the span-selection baseline models [20]. We found
that our models outperformed comparison models for shooter
identification. Specifically, that BERT-LSTM was highest on
precision and F1, while BERT-BiLSTM-CRF was highest on
recall. Comparing CRF models to non-CRF models, we see
that results are similar. The idea of CRF that utilizes neighbor
tag information does not lead to prominent results, given
BERT is present. This is because BERT and BiLSTM take
the entire document or sentence into account during training.

TABLE II
PERFORMANCE COMPARISON ON PREDICTING SHOOTER NAME

Chosen Metrics
Models Precision Recall F1
GVDB 5.8% 3.9% 4.7%

Baseline 55.3% 51.1% 53.1%
BERT 49.4% 52.0% 50.6%

BERT-LSTM 60.6% 53.1% 56.6%
BERT-BiLSTM 54.3% 55.7% 55.0%

BERT-CRF 47.3% 58.9% 52.4%
BERT-LSTM-CRF 54.8% 51.9% 53.3%

BERT-BiLSTM-CRF 46.5% 67.1% 55.0%

For victim name identification, we found that BERT can
produce similar, or better, F1 scores when compared to the
baseline span-selection model, with BERT-LSTM-CRF and
BERT-CRF performing the best of all models for recall and
F1 respectively.

TABLE III
PERFORMANCE COMPARISON ON PREDICTING VICTIM NAME

Chosen Metrics
Models Precision Recall F1
GVDB 10.2% 8.5% 9.3%

Baseline 61.2% 63.3% 62.2%
BERT 57.1% 82.0% 67.3%

BERT-LSTM 54.9% 78.7% 64.7%
BERT-BiLSTM 51.0% 82.9% 63.2%

BERT-CRF 57.7% 83.2% 68.1%
BERT-LSTM-CRF 54.3% 89.7% 67.7%

BERT-BiLSTM-CRF 54.9% 87.0% 67.3%

Recalling that accuracy was higher in Table 3, when
compared to Table 2, it is important to note that recall is
easily affected by data distribution. In the GVDB, there is
an unbalanced distribution of shooter (Fig. 9) and victim (Fig.
10) information. In 431 of the 500 data samples in the testing
set, the victim information was present. In comparison, in
only 247 of the 500 were shooter information present. If
the model regards that a sentence or a document does not
contain a shooter/victim but it actually does, then that data
sample is a false negative. On the other hand, if the model



Fig. 9. Shooter Data Distribution

Fig. 10. Victim Data Distribution

regards that a sentence or a document contains a shooter/victim
but it actually does not, then that data sample is a false
positive. Because there are few non-victim data points that
can be evaluated as false negatives, the false negatives in
victim evaluation are less. In eq. (2) and eq. (3), we see that
precision is affected by false positives and recall is affected
by false negatives. As the number of false positives goes up,
precision goes down. As the number of false negatives goes
down, recall goes up. Hence, recall is higher, but precision
is not. In addition, in [19], although they did not reveal the
implementation of the text classifier during collection phase,
GVDB was collected using a high-recall text classifier, and it
might affect recalls, especially on CRF models, if they used
similar graph-based models.

precision =
True Positive

True Positive + False Positive
(2)

recall =
True Positive

True Positive + False Negative
(3)

Although BERT-LSTM had the best precision for predicting
shooter names, the baseline model had the best precision for
predicting victim names. Sequence tagging has an inconsis-
tency issue that can make it difficult to see the combination

of ”B” and ”I”. For example, if there is a sequence of ”B O
I”, only the first token that is seen as ”B” will be treated as a
target, but it is possible that these three tokens form an actual
target. Nevertheless, experimentally, sequence tagging using
BERT generates better F1 scores on GVDB.

We assume that BERT already keeps the information from
forward and backward sentences, so including backward infor-
mation in BiLSTM during fine-tuning phase does not change
performance compared to LSTM. Although [27] and [28]
both implemented BERT-LSTM-CRF and BERT-BiLSTM-
CRF, they did not compare the performance between BERT
and CRF; hence, our future work will examine this assump-
tion. We encourage others to use the same model architectures
on more and different sequence tagging benchmarks. However,
we propose a new technique on GVDB to extract target
information with better F1 scores.

VI. CONCLUSION

In this paper, we present a new model for extracting shooter
and victim names from news media articles. While span selec-
tion has been used previously [20], there is a potential to drop
candidates during the pruning step. This can be improved by
utilizing the fine-tuning step in BERT and then converting the
original problem into a sequence tagging task. By tagging each
token in a document, we are able to classify each’s tag and
further evaluate results with a BIO technique. Furthermore,
this method better deals with the issue of multiple targets in
one sentence, so as to only take the most probable data as
our predicted target. As a result, our new model outperforms
previous models in F1 scores.

There are a multitude of actions on social media that
can lead to real-world gang violence, even expressions of
grief and loss [32][33]. However, effective responses from
crisis intervention workers on social media can lead to de-
escalation of violent situations offline [34]. As a result, it
is important that the accuracy of automated natural language
processing methods be improved for them to be useful for
deployment by social workers. By reducing the number of
false positive and negative name identifications, and combining
with techniques for detecting loss and aggression [18][35][36],
violence prevention workers can be correctly alerted to posts
which may escalate to real-world violence, correctly identify
the persons (shooters and victims) who may be involved in
said violence, and apply de-escalation tactics.

We believe that, by continuously accumulating training data
and process, we can improve this model and better predict the
gun violence information accurately. Combining our model
with searching keyword or classifying news, a detector can
be placed on social media to capture suspicious gun violence
activities across online platforms and aid law enforcement
investigators with preventing victimization and/or identifying
perpetrators of offline violence.
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